β-Nicotinamide mononucleotide, 99% (1g)

Sale!
Description

Description

β-Nicotinamide mononucleotide, ≥99% (HPLC)
CAS: 1094-61-7
Synonym: NMN, β-NMN, β-Nicotinamide ribose monophosphate, Nicotinamide ribotide, Nicotinamide-1-ium-1-β-D-ribofuranoside 5′-phosphate
Empirical Formula (Hill Notation): C11H15N2O8P
Molecular Weight 334.22
Beilstein/REAXYS Number 3570187
EC Number 214-136-5
MDL number MFCD00038748
PubChem Substance ID 24897645
NACRES NA.51

β-Nicotinamide mononucleotide  (“NMN”, “NAMN”, and “β-NMN”) is a nucleotide derived from ribose and nicotinamide. Like nicotinamide riboside (NR), NMN is a derivative of niacin, and humans have enzymes that can use NMN to generate nicotinamide adenine dinucleotide (NADH). In mice, NMN enters cells via the small intestines within 10 minutes converting to NAD+ through the Slc12a8 NMN transporter. Because NADH is a cofactor for processes inside mitochondria, for sirtuins, and for PARP, NMN has been studied in animal models as a potential neuroprotective and anti-aging agent. Dietary supplement companies have aggressively marketed NMN products claiming those benefits. Doses of up to 500 mg was shown safe in human.

NMN is also used to study binding motifs within RNA aptamers and ribozyme activation processes involving β-nicotinamide mononucleotide (β-NMN)-activated RNA fragments.

 

[1] X. Xie, C. Yu, J. Zhou, Q. Xiao, Q. Shen, Z. Xiong, Z. Li, Z. Fu, Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice, J Affect Disord 263 (2020) 166-174.
[2] G.M. Uddin, N.A. Youngson, S.S. Chowdhury, C. Hagan, D.A. Sinclair, M.J. Morris, Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers, Cells 9(4) (2020).
[3] X. Ma, Y. Zhu, J. Lu, J. Xie, C. Li, W.S. Shin, J. Qiang, J. Liu, S. Dou, Y. Xiao, C. Wang, C. Jia, H. Long, J. Yang, Y. Fang, L. Jiang, Y. Zhang, S. Zhang, R.G. Zhai, C. Liu, D. Li, Nicotinamide mononucleotide adenylyltransferase uses its NAD(+) substrate-binding site to chaperone phosphorylated Tau, Elife 9 (2020).
[4] T. Kiss, A. Nyul-Toth, P. Balasubramanian, S. Tarantini, C. Ahire, A. Yabluchanskiy, T. Csipo, E. Farkas, J.D. Wren, L. Garman, A. Csiszar, Z. Ungvari, Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects, Geroscience (2020).
[5] J. Irie, E. Inagaki, M. Fujita, H. Nakaya, M. Mitsuishi, S. Yamaguchi, K. Yamashita, S. Shigaki, T. Ono, H. Yukioka, H. Okano, Y.I. Nabeshima, S.I. Imai, M. Yasui, K. Tsubota, H. Itoh, Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men, Endocr J 67(2) (2020) 153-160.
[6] L. Hosseini, M.S. Vafaee, R. Badalzadeh, Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats, J Cardiovasc Pharmacol Ther 25(3) (2020) 240-250.
[7] B.A. Haubrich, C. Ramesha, D.C. Swinney, Development of a Bioluminescent High-Throughput Screening Assay for Nicotinamide Mononucleotide Adenylyltransferase (NMNAT), SLAS Discov 25(1) (2020) 33-42.
[8] W.B. Black, L. Zhang, W.S. Mak, S. Maxel, Y. Cui, E. King, B. Fong, A. Sanchez Martinez, J.B. Siegel, H. Li, Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis, Nat Chem Biol 16(1) (2020) 87-94.
[9] N.A. Youngson, G.M. Uddin, A. Das, C. Martinez, H.S. Connaughton, S. Whiting, J. Yu, D.A. Sinclair, R.J. Aitken, M.J. Morris, Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice, Reproduction 158(2) (2019) 169-179.
[10] P. Wang, Y. Lu, D. Han, P. Wang, L. Ren, J. Bi, J. Liang, Neuroprotection by nicotinamide mononucleotide adenylyltransferase 1 with involvement of autophagy in an aged rat model of transient cerebral ischemia and reperfusion, Brain Res 1723 (2019) 146391.
[11] S. Tarantini, M.N. Valcarcel-Ares, P. Toth, A. Yabluchanskiy, Z. Tucsek, T. Kiss, P. Hertelendy, M. Kinter, P. Ballabh, Z. Sule, E. Farkas, J.A. Baur, D.A. Sinclair, A. Csiszar, Z. Ungvari, Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice, Redox Biol 24 (2019) 101192.
[12] J. Stringer, E. Groenewegen, S.H. Liew, K.J. Hutt, Nicotinamide mononucleotide does not protect the ovarian reserve from cancer treatments, Reproduction (2019).
[13] J. Song, J. Li, F. Yang, G. Ning, L. Zhen, L. Wu, Y. Zheng, Q. Zhang, D. Lin, C. Xie, L. Peng, Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow, Cell Death Dis 10(5) (2019) 336.
[14] S.K. Poddar, A.E. Sifat, S. Haque, N.A. Nahid, S. Chowdhury, I. Mehedi, Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule, Biomolecules 9(1) (2019).
[15] L. Ortiz-Joya, L.E. Contreras-Rodriguez, M.H. Ramirez-Hernandez, Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis, Mem Inst Oswaldo Cruz 114 (2019) e180506.
[16] M. Lukacs, J. Gilley, Y. Zhu, G. Orsomando, C. Angeletti, J. Liu, X. Yang, J. Park, R.J. Hopkin, M.P. Coleman, R.G. Zhai, R.W. Stottmann, Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence, Exp Neurol 320 (2019) 112961.
[17] H. Liang, J. Gao, C. Zhang, C. Li, Q. Wang, J. Fan, Z. Wu, Q. Wang, Nicotinamide mononucleotide alleviates Aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome, Toxicol Appl Pharmacol 362 (2019) 20-27.
[18] N. Klimova, A. Long, T. Kristian, Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice, J Neurosci Res 97(8) (2019) 975-990.
[19] N. Klimova, T. Kristian, Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism, Neurochem Res 44(10) (2019) 2280-2287.
[20] T. Kiss, C.B. Giles, S. Tarantini, A. Yabluchanskiy, P. Balasubramanian, T. Gautam, T. Csipo, A. Nyul-Toth, A. Lipecz, C. Szabo, E. Farkas, J.D. Wren, A. Csiszar, Z. Ungvari, Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects, Geroscience 41(4) (2019) 419-439.
[21] T. Kiss, P. Balasubramanian, M.N. Valcarcel-Ares, S. Tarantini, A. Yabluchanskiy, T. Csipo, A. Lipecz, D. Reglodi, X.A. Zhang, F. Bari, E. Farkas, A. Csiszar, Z. Ungvari, Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment, Geroscience 41(5) (2019) 619-630.
[22] L. Hosseini, F. Farokhi-Sisakht, R. Badalzadeh, A. Khabbaz, J. Mahmoudi, S. Sadigh-Eteghad, Nicotinamide Mononucleotide and Melatonin Alleviate Aging-induced Cognitive Impairment via Modulation of Mitochondrial Function and Apoptosis in the Prefrontal Cortex and Hippocampus, Neuroscience 423 (2019) 29-37.
[23] K. Hasegawa, Novel tubular-glomerular interplay in diabetic kidney disease mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide Oshima Award Address 2017, Clin Exp Nephrol 23(8) (2019) 987-994.
[24] A. Grozio, K.F. Mills, J. Yoshino, S. Bruzzone, G. Sociali, K. Tokizane, H.C. Lei, R. Cunningham, Y. Sasaki, M.E. Migaud, S.I. Imai, Slc12a8 is a nicotinamide mononucleotide transporter, Nat Metab 1(1) (2019) 47-57.
[25] M.A. Assiri, H.R. Ali, J.O. Marentette, Y. Yun, J. Liu, M.D. Hirschey, L.M. Saba, P.S. Harris, K.S. Fritz, Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease, Hum Genomics 13(1) (2019) 65.
[26] C.A. Sims, Y. Guan, S. Mukherjee, K. Singh, P. Botolin, A. Davila, Jr., J.A. Baur, Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock, JCI Insight 3(17) (2018).
[27] T. Pottorf, A. Mann, S. Fross, C. Mansel, B.P.S. Vohra, Nicotinamide Mononucleotide Adenylyltransferase 2 maintains neuronal structural integrity through the maintenance of golgi structure, Neurochem Int 121 (2018) 86-97.
[28] C.A. Nieto, L.M. Sanchez, D.M. Sanchez, G.J. Diaz, M.H. Ramirez, Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages, Malar J 17(1) (2018) 161.
[29] S.M. Nadtochiy, Y.T. Wang, K. Nehrke, J. Munger, P.S. Brookes, Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH, J Mol Cell Cardiol 121 (2018) 155-162.
[30] G.C. Marinescu, R.G. Popescu, G. Stoian, A. Dinischiotu, beta-nicotinamide mononucleotide (NMN) production in Escherichia coli, Sci Rep 8(1) (2018) 12278.
[31] G.C. Marinescu, R.G. Popescu, A. Dinischiotu, Size Exclusion Chromatography Method for Purification of Nicotinamide Mononucleotide (NMN) from Bacterial Cells, Sci Rep 8(1) (2018) 4433.
[32] K. Konishi, S. Ueda, M. Kawano, S. Osawa, T. Tamura, E. Hokazono, Y. Kayamori, S.I. Sakasegawa, Characterization and application of a novel nicotinamide mononucleotide adenylyltransferase from Thermus thermophilus HB8, J Biosci Bioeng 125(4) (2018) 385-389.
[33] S. Johnson, D.F. Wozniak, S. Imai, CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves, NPJ Aging Mech Dis 4 (2018) 10.
[34] L.E. Contreras-Rodriguez, C.Y. Marin-Mogollon, L.M. Sanchez-Mejia, M.H. Ramirez-Hernandez, Structural insights into Plasmodium falciparum nicotinamide mononucleotide adenylyltransferase: oligomeric assembly, Mem Inst Oswaldo Cruz 113(9) (2018) e180073.
[35] M.J. Bertoldo, G.M. Uddin, N.A. Youngson, D. Agapiou, K.A. Walters, D.A. Sinclair, M.J. Morris, R.B. Gilchrist, Multigenerational obesity-induced perturbations in oocyte-secreted factor signalling can be ameliorated by exercise and nicotinamide mononucleotide, Hum Reprod Open 2018(3) (2018) hoy010.
[36] ERRATUM: Structural insights into Plasmodium falciparum nicotinamide mononucleotide adenylyltransferase: oligomeric assembly”, Mem Inst Oswaldo Cruz 113(9) (2018) e180073ER.
[37] R. Zhang, Y. Shen, L. Zhou, P. Sangwung, H. Fujioka, L. Zhang, X. Liao, Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure, J Mol Cell Cardiol 112 (2017) 64-73.
[38] Z. Yao, W. Yang, Z. Gao, P. Jia, Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease, Neurosci Lett 647 (2017) 133-140.
[39] C.C. Wei, Y.Y. Kong, G.Q. Li, Y.F. Guan, P. Wang, C.Y. Miao, Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway, Sci Rep 7(1) (2017) 717.
[40] C.C. Wei, Y.Y. Kong, X. Hua, G.Q. Li, S.L. Zheng, M.H. Cheng, P. Wang, C.Y. Miao, NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia, Br J Pharmacol 174(21) (2017) 3823-3836.
[41] S. Ummarino, M. Mozzon, F. Zamporlini, A. Amici, F. Mazzola, G. Orsomando, S. Ruggieri, N. Raffaelli, Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay, Food Chem 221 (2017) 161-168.
[42] G.M. Uddin, N.A. Youngson, B.M. Doyle, D.A. Sinclair, M.J. Morris, Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise, Sci Rep 7(1) (2017) 15063.
[43] A. Miwa, Y. Sawada, D. Tamaoki, M. Yokota Hirai, M. Kimura, K. Sato, T. Nishiuchi, Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley, Sci Rep 7(1) (2017) 6389.
[44] A.B. Martinez-Monino, R. Zapata-Perez, A.G. Garcia-Saura, F. Gil-Ortiz, M. Perez-Gilabert, A. Sanchez-Ferrer, Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency, PLoS One 12(4) (2017) e0174759.
[45] A.S. Martin, D.M. Abraham, K.A. Hershberger, D.P. Bhatt, L. Mao, H. Cui, J. Liu, X. Liu, M.J. Muehlbauer, P.A. Grimsrud, J.W. Locasale, R.M. Payne, M.D. Hirschey, Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model, JCI Insight 2(14) (2017).
[46] Y. Guan, S.R. Wang, X.Z. Huang, Q.H. Xie, Y.Y. Xu, D. Shang, C.M. Hao, Nicotinamide Mononucleotide, an NAD(+) Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner, J Am Soc Nephrol 28(8) (2017) 2337-2352.
[47] R.S. Fletcher, J. Ratajczak, C.L. Doig, L.A. Oakey, R. Callingham, G. Da Silva Xavier, A. Garten, Y.S. Elhassan, P. Redpath, M.E. Migaud, A. Philp, C. Brenner, C. Canto, G.G. Lavery, Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells, Mol Metab 6(8) (2017) 819-832.
[48] X. Wang, X. Hu, Y. Yang, T. Takata, T. Sakurai, Nicotinamide mononucleotide protects against beta-amyloid oligomer-induced cognitive impairment and neuronal death, Brain Res 1643 (2016) 1-9.
[49] G.M. Uddin, N.A. Youngson, D.A. Sinclair, M.J. Morris, Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice, Front Pharmacol 7 (2016) 258.
[50] D.M. Sanchez-Lancheros, L.F. Ospina-Giraldo, M.H. Ramirez-Hernandez, Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): a cytosol protein target for serine kinases, Mem Inst Oswaldo Cruz 111(11) (2016) 670-675.
[51] J. Ratajczak, M. Joffraud, S.A. Trammell, R. Ras, N. Canela, M. Boutant, S.S. Kulkarni, M. Rodrigues, P. Redpath, M.E. Migaud, J. Auwerx, O. Yanes, C. Brenner, C. Canto, NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells, Nat Commun 7 (2016) 13103.
[52] J.H. Park, A. Long, K. Owens, T. Kristian, Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia, Neurobiol Dis 95 (2016) 102-10.
[53] K.F. Mills, S. Yoshida, L.R. Stein, A. Grozio, S. Kubota, Y. Sasaki, P. Redpath, M.E. Migaud, R.S. Apte, K. Uchida, J. Yoshino, S.I. Imai, Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice, Cell Metab 24(6) (2016) 795-806.
[54] X.R. Mao, D.M. Kaufman, C.M. Crowder, Nicotinamide mononucleotide adenylyltransferase promotes hypoxic survival by activating the mitochondrial unfolded protein response, Cell Death Dis 7 (2016) e2113.
[55] T. Kawamura, N. Mori, K. Shibata, beta-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats, J Nutr Sci Vitaminol (Tokyo) 62(4) (2016) 272-276.
[56] N.E. de Picciotto, L.B. Gano, L.C. Johnson, C.R. Martens, A.L. Sindler, K.F. Mills, S. Imai, D.R. Seals, Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice, Aging Cell 15(3) (2016) 522-30.
[57] C. Cui, J. Qi, Q. Deng, R. Chen, D. Zhai, J. Yu, Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer, Biomed Res Int 2016 (2016) 1804137.